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RELAXATION OF TUBES AND BUCKLING OF BARS MADE OF VISCOPLASTIC MATERIALS

A, M. Lokoshchenko and S, A, Shesterikov
Zhurnal Prikladnoi Mekhaniki 1 Tekhnicheskoi Fiziki, Vol. 7, No. 4,

The behavior of two structural elements made of ideally plastic
material with nonlinear viscosity is investigated.

This model was first proposed by Odqvist [1j and employed by
Rozenblyum [2], Odgqvist's model received satisfactory experimental
confirmation in the work of Gardner and Miller {3}, who clearly ob-
served the yield point; (up to a certain stress level there is a non-
linear relation between the steady-state creep stresses and rates, and
beyond a critical stress ("creep limit") flow at arbitrary strain rates
is observed). '

In a number of cases neglecting the elastic strains leads to too
rough an estimation of the real behavior of structural elements. Thus,
an investigation of the process of stress relaxation must take instan-
taneous elasticity into account,

The first part of this paper is concerned with the problem of stress
relaxation in a tube fitted over a rigid shaft when the wbe material
obeys the following conditions (Fig. 1a, b). Everywhere where the
yidld point has not been reached the strains are elastic; moreover,
at stresses above a certain value creep strains (steady-state or tran-
sient finite) develop, The yield point is the maximum permissible
stress for the material; in regions where the yield point is reached
the elastic and creep strains may be neglected as compared with the
plastic strains,

The second pait of the paper is devoted to the buckling of bars
under conditions of nonlinear creep. ‘

As distinct from [4-6], in which a bar with an idealized cross
section is investigated, we will consider a solid bar and take into
account the variability of the stresses over the section. Moreover,
at stresses less than og the steady-state creep relations are taken with-
out allowance for instantaneous elastic strains—in fact, the model
employed is that of a rigid, perfectly plastic medium with instan-
taneous deformation allowing for nonlinear viscosity.

§1. Initial state of stress and strain in a pressurized tube, We will
consider an incompressible tube of circular cylindrical cross section
made of an elastic-perfectly plastic material under conditions of
plane deformation, The dimensionless radii of the tube are: inside—
a, outside—1,
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In the presence of a uniform internal pressure p in the elastic
state the stress components take the form [7]
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For an incompressible tube the relation between radial displace-
ment and radius u(r) takes the form

u (r) = 1.5 p*E~1rt,

where E is the modulus of elasticity of the material. In accordance
with (1.2), the stress intensity reaches a maximum at the inside sur-
face of the tube, If oj is such that of = q atr = q, where q is the
limiting value of 0i, then a plastic zone develops at the inside sur-
face., The dimensionless radius of the interface between the elastic
and plastic zones will be denoted by c.
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In the plastic zone

r
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si=¢ (a<<r<o). (1.3)
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In the elastic zone

6, = —qe ("2 —1),  oy= g (1),

o, =gt (c<r<1). (1.4)

The radius of the interface between zones is related with the in-
ternal pressure as follows:

P £
052 = in )05t —e.

The radial displacements u(r) of the tube in the elastoplastic state
have the following dependence on t:

u(r)= 1.5 gc® E-r i,

§2. Solution of problem with allowance for steady-state creep.
This model is an attempt to describe the processes in the tube after
it has been dynamically fitted over a rigid shaft, In simple tension
(or pure torsion) diagrams the Young's modulus {or shear modulus)
remains unchanged at different strain rates, whereas the yield point
rises with increase in strain rate, The tube is fitted in the cold state
at such a speed that the yield point in shear increases from the static
value k to the dynamic value q: ¢/k =X > 1. We introduce the di-
mensionless stresses s = o/q. If sj = 1/X everywhere at a =t = 1, then
the tube remains plastic, This case is of no interest; therefore in what
follows we will everywhere assume that the state of stress at the in-
itial moment is such that on the inside part of the tube or throughout
the tube s; > 1/A. In this region steady-state creep develops in ac-
cordance with the power law

(e = Bg™ (s; — 1/M)"
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Here (&) is the creep rate intensity, B and n are constants char-
acterizing the creep process. As t-—»> = (1 is time} the material be-
comes elastic-perfectly plastic with a static yield point sj = 1/X
(Fig, 1a).

SIS s
\Lf\..
! ST —
ob— L
]
i
-1
2
! S ]
1575 =] =
=17 5, . p %
10 // /T“N ]’.J // —tT
/— /:/] —+— 5 7 = T —IS;—
05= i 4
|
T ala = B : >
. 0§ 185 _z
o S )
05— -%V/' | |54
) - ,/"’/
~ N -~
LA S 1
74 |~
B, IS \
Fig. 8

At the initial moment the internal pressure py imparts to the in-
side contour of the tube a displacement u(a) = 1.5 P*E"Y, if the entire
tube is in the elastic state, oru(a) =1.5 qczE'la'l, if the inside part
@ =1 = cis in the perfectly plastic state sj = 1. In accordance with
the formulation of the problem, u(a) does not vary with time, From
the conditions of plane deformation and incompressibility it follows
that u(r) is also constant in time.

We will consider that part of the tube @ =r =d =1 (or the whole
tube), in which at the initial moment s; > 1/A. The relation between
the stress and strain rate intensities

._3q . 1\
& ="F § —}-Bq"(s.;—»T) @.1)

and the condition du/dt = 0 give the differential equation in s;

3 13
5 & + B! (si - T) =.0-
Integrating, we obtain
sp(r, t)i=

BEg™? (sip— 1/M"?
3(n—1)

_ 1
t] M}. (2.2)

The function sj; = sjo(r)—the distribution of sj at t = 0 —is found
from (1.1) or (1.3)—(1. 4). Equation (2, 2) gives si(r, t) at any point
of the tube at any moment of time, After this it is possible to de~
termine s(r, t) from the equation

=3 {1+ oso—[1+

st = (20D o 2.3)
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a consequence of the equilibrium equation, and then sg(z, t) fiom
(1.2). We denote the stress components as t = © by Sjw, Sw, SGes

We will determine the relative decrease in pressure A = (py —
~ Puo)/ Py for an elastic and elastoplastic distribution sj, Four cases
need to be considered,

When sj, < 1 the two cases

* Po 2 .
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2k 1
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When s;o (r)=Ii (a<r<o the two cases
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Figure 2 presents A(A) curves for a tube with @ =0, 5 for limiting
elastic (c = 0, 5), elastoplastic (¢ =0.75) and limiting plastic (c = 1)
states at the initial moment. In Fig. 3a, b, c the continuous lines
represent the relations S5 (r), S0 (), 84, (r), the chain-dotted lines
the relations $;,, (7) 8, {r); Sge (7) at A =1,5 fora =0.5, ¢ =0.,5,
0,75, 1, Atc =0,5, ¢ =0,75, ¢ =1 we have A =8, 4%, 26, 6%,

33, 4%, respectively,

§3, Solution of the relaxation problem for a tube with allowance
for transient finite creep, We will consider a tube fitted over a rigid
shaft at a strain rate corresponding to an elastic-perfectly plastic o; —
— gj diagram for the tube material with the same limiting value oj =
=k as in the static g — g; diagram, In this case we refer all the
stresses to k: s = o/k, Let the static diagrams (Fig.1b)at0 s s sw <
< 1 (where w corresponds to the elastic limit) coincide with the dy-
namic diagram; at w < i < 1 the elastic strains of the dynamic dia-
gram are added to the transient creep strains, while atsj =1 the
material is perfectly plastic, The static diagram thus introduced
agrees with experiments on titanium, mild steel and other materials,

We introduce the following relation between the intensities of
stress, strain and the corresponding rates at w < si < 1:

3ksy 3ks; ;
gy == -——Eal--{-Bk"(si—.m)"—A(ei———Eﬁ'). 3.1)

Fig. 4

Here the constants B and n characterize the steady-state creep, and
the constant A the creep attenuation, At the initial momentt =0
there follows from (3. 1)

e, = 3ksy/E, (3.2)

which cormresponds to the dynamic diagram. To obtain the static dia-
gram we integrate (3.1) with the condition s; = 0, We obtain

"3ks Bi™
Bt ="+ S (— o —e4h,
ast—> o
3ks.1 Bk»
g=—p T~ (ss— o), (3.8)
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At s; = w curves (3. 2) and (3. 3) merge smoothly with each other,
At s; =1 the derivative dsi/dsi has a discontinuity, which can be
eliminated at the expense of a complication of (3. 1),

We now turn to the problem of relaxation of an incompressible
tube, As in the preceding section, incompressibility gives gi = gjy =
= const, €;° = 0. We integrate (3.1) under these conditions:

8,
o dsy
=F S A (e — sy ] E) — BRA (5, — a0 (.4)
i 8{0

The distribution sj(r) is determined on the basis of (1. 1) or (1. 3),
(1.4), in which q must be replaced by k,

Equation (8, 4) gives the distribution sj = sj(r, t). Then, in accor-
dance with (2.3) and (1, 2), we can find the stresses sy(z, t) and sg(r, t)
at any moment of time, Since in the general case Eq. (3, 4) cannot
be completely integrated, we performed calculations for a tube with

=1/92, whose material remains elastic at 0 =s; 0,75, Three
different values of ¢ were considered: 0,5, 0.75, and 1. As an ex-
ample, we used the following values of the material characteristics: .
n =5, E/k =10% Bk =0,032 hr™\, The constant A was selected so
that the curve (3. 3) intersected the straight line sj =1 at a point cor~
responding to the nominal yield point and determined using &g = 0.2%,
i.e., &g =0,004 (Fig. 1b), A =0.0078 hr™",

The distributions s (r), sp0 (), sgy (r) (Fig.3a, b, ¢), calculated
for the two models, coincide, The functions s;. (r),s Spoo (T 8e0q ()
are represented in Fig. 3a, b, c by a broken line, The relative de-
crease in the pressure of the tube on the shaft & = (py — p,)/py is
0.87% atc=0,8, A=3,42% atc=0,75 and A =3,69% 2t c =1,

§4, Buckling of a bar, We will consider the problem of the buck-
ling of a bar with an initial curvature under the action of an axial
load, For the stress-strain relation we will take an expression of the
type o = De’™®, We will consider a bar (Fig, 4) of constant cross sec-
tion compressed by a longitudinal force P and having an initial curva-
ture vo(x). During creep the deflection will increase, and the increase
in deflection will be denoted by v(x, t), We will adopt the hypothesis
of plane sections; then, assuming that the deflections are small, we
can write

a2y
8=€0+ZW' 4.1)

where &, is the deformation of the bar axis, and z fs the coordinate of
the section of the bar in the plane of bending, The equilibrium equa-
tions for the bar can be written in the form

h
P= S bodz,

h
—P(vtvg)= S bozdz, (4.2)
~h ~h

where 2h is the height of the bar,
We will investigate the behavior of a hinged bar, In this case we
assume that both the initial and the secondary deflections can be suf-

ficiently accurately approximated by a single half-wave of a sinusoid:

. nx
2o = o Sin—~,

. Nz

p=asin—p-. (4.3)
We satisfy Egs. (4.2) by the collocation method. We introduce the

dimensionless parameters (b, is the mean thickness of the bar)

bar)

b P, P
B T P=ppre Y=g,
a n%h? z

U=, P=i E=Te 49
Using (4. 1)—(4. 4) for the case when there are no plastic regions
over the cross section of the bar, we obtain

P1‘=
1 1
= (b —purrde, —Puutw)= (b —pweymist. @.9)
-1 -1

We make the substitution &, = kpu®; then system (4, 5) can be
written in the form

1
mk):S by (k— EymdE,,

4

Py=(pu)™ Lo,
1

—Piatu) =), hE={hE—gme. 4.6
-1

From (4. 68) it is easy to obtain a single equation for determining
k as a function of time t:

11)'
p(- Iy kk =

For a bar of rectangular cross section (b; = 1) we have

(2"

(k 4 )™+ (b — 1ym*1
m+1 ’

k (k 4 1)™1 | ( — 4)ymh
1=y o— m-2

Iy =

I

We derive the boundary conditions for k determined from (4. 7).
At t =0 we have the condition u =0 and hence from (4. 6) we find
ToCko)up = —Ty(ko)

The condition for the appearance of plasticity on the concave side
of the bar gives an expression for finding the other boundary of the
region of variation of k where equation (4. 7) holds tme,

From the condition 6 = g at § = —1 we obtain

0, = A (pu)™ (k1 -+ D)™, (4. 8)
Eliminating u’ from (4.6) and (4.8), we find the equation for ky:
APy(ky +1)m = osIy(ky), or 2y (b + 1ym = I {k;). (4. 9)

When y < 1/r the solution of (4. 9) can be represented with suf-
ficient accuracy in the form ky = y/(1 — my); at y close to 1 ky =
~ym/(l — 7).

Thus, for the time of onset of plastic flow on the concave face
of the bar 7; we obtain the expression

1 1

Iol/m ( —

o

Ly

PUmdr—p )k dk. (4.10)
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For a bar of rectangular cross section expression (4. 10) assumes the
form

Ty ko

mg P
SPII/ dz,(m+2)§f(k)dk,

o ™ g — 1>m+1]1/m { 4 (m 4 1)2 (k2 — dym }
D Tk O™ — (e — )

Fo0 =

We now turn to the case when a single plastic region propagates
over the cross section of the bar. Then system (4.5) for a bar of rec-
tangular cross section is replaced by the following equations:

L v
A A
=t +1-+ 7,—8 (o —wpR)"dE, o (e —wpE) =1,
£

1

1
2—1 A
ot =T e, @

g1

Here £ is the boundary between the viscous and plastic zones. This
system characterizes a rectangular zone: it is real up to the moment
when a plastic region appears on the convex face of the bar. The con-
dition for the appearance of such a region has the form

At — uwp)=—0s . (4.12)
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We note that condition (4, 12) gives the following values of the
parameters:

1 S ym
ke=vy, g=2y—1, uP=T:T(7f) . (4. 13)

Knowing u” at the end of the first period and Using the equation
for u” from (4.13), it is easy to estimate the duration of the second
period by approximating the function u,

We will investigate the behavior of the bar when two plastic zones
propagate over the cross section, We denote by &, the boundary be-
tween the zone of viscous flow and the second plastic region, We then
have the two relations

A (2 — pu'Ey)™ =0,, A (e —put)™ = —og,. (4. 14)

By using (4. 13) we can reduce the first equilibrium equations to

the form

m 2ey
=Gy G YT (#.15)

From (4. 14) and (4, 15) we obtain &1 - E» = 27,8, = u'py. Then,
from the second equilibrium equation we find an equation for u:

s, )ﬁlm

. m
(B [ — 21 (o ) — 1] = g gy (A 4.16)

The critical total deflection as u” — « is found from the relation
wr - up = (1 — y/2y.

Equation (4, 16) can easily be integrated for constant y.
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